| 1 | #include "Library/Math/ParabolicPath.h" |
| 2 | |
| 3 | #include "Library/Math/MathUtil.h" |
| 4 | |
| 5 | namespace al { |
| 6 | |
| 7 | ParabolicPath::ParabolicPath() {} |
| 8 | |
| 9 | void ParabolicPath::initFromUpVector(const sead::Vector3f& start, const sead::Vector3f& end, |
| 10 | const sead::Vector3f& up) { |
| 11 | f32 scalar; |
| 12 | sead::Vector3f upDir; |
| 13 | separateScalarAndDirection(&scalar, &upDir, up); |
| 14 | initFromUpVector(start, end, up: upDir, maxHeight: scalar); |
| 15 | } |
| 16 | |
| 17 | void ParabolicPath::initFromUpVector(const sead::Vector3f& start, const sead::Vector3f& end, |
| 18 | const sead::Vector3f& up, f32 maxHeight) { |
| 19 | mUp.set(up); |
| 20 | sead::Vector3f diff = end - start; |
| 21 | f32 verticalDistance = diff.dot(t: mUp); |
| 22 | mHorizontalDirection = diff - (mUp * verticalDistance); |
| 23 | separateScalarAndDirection(&mHorizontalDistance, &mHorizontalDirection, mHorizontalDirection); |
| 24 | calcParabolicFunctionParam(&mGravity, &mInitialVelY, maxHeight, verticalDistance); |
| 25 | mStart.set(start); |
| 26 | } |
| 27 | |
| 28 | void ParabolicPath::initFromMaxHeight(const sead::Vector3f& start, const sead::Vector3f& end, |
| 29 | const sead::Vector3f& projectedEnd) { |
| 30 | sead::Vector3f up; |
| 31 | f32 scalar; |
| 32 | separateScalarAndDirection(&scalar, &up, projectedEnd - end); |
| 33 | initFromUpVector(start, end, up, maxHeight: (projectedEnd - start).dot(t: up)); |
| 34 | } |
| 35 | |
| 36 | void ParabolicPath::initFromUpVectorAddHeight(const sead::Vector3f& start, |
| 37 | const sead::Vector3f& end, const sead::Vector3f& up, |
| 38 | f32 height) { |
| 39 | f32 verticalDistance = sead::Mathf::clampMin(val: (end - start).dot(t: up), min_: 0.0f); |
| 40 | initFromUpVector(start, end, up, maxHeight: verticalDistance + height); |
| 41 | } |
| 42 | |
| 43 | f32 ParabolicPath::getLength(f32 start, f32 end, s32 iterations) const { |
| 44 | s32 steps = sead::Mathi::clampMin(val: iterations, min_: 1); |
| 45 | f32 stepSize = (end - start) / steps; |
| 46 | f32 squaredHStepSize = sead::Mathf::square(t: stepSize * mHorizontalDistance); |
| 47 | f32 vDist = (mGravity * start + mInitialVelY) * start; |
| 48 | f32 length = 0; |
| 49 | |
| 50 | for (s32 i = 0; i < steps;) { |
| 51 | i++; |
| 52 | f32 prevVDist = vDist; |
| 53 | f32 curStep = start + i * stepSize; |
| 54 | vDist = (mGravity * curStep + mInitialVelY) * curStep; |
| 55 | length += sead::Mathf::sqrt(t: squaredHStepSize + sead::Mathf::square(t: vDist - prevVDist)); |
| 56 | } |
| 57 | |
| 58 | return length; |
| 59 | } |
| 60 | |
| 61 | f32 ParabolicPath::getTotalLength(s32 iterations) const { |
| 62 | return getLength(start: 0.0f, end: 1.0f, iterations); |
| 63 | } |
| 64 | |
| 65 | void ParabolicPath::calcPositionHV(sead::Vector3f* pos, f32 h, f32 v) const { |
| 66 | f32 hDist = mHorizontalDistance * h; |
| 67 | f32 vDist = (mGravity * v + mInitialVelY) * v; |
| 68 | *pos = mStart + (vDist * mUp) + (hDist * mHorizontalDirection); |
| 69 | } |
| 70 | |
| 71 | void ParabolicPath::calcPosition(sead::Vector3f* pos, f32 prog) const { |
| 72 | calcPositionHV(pos, h: prog, v: prog); |
| 73 | } |
| 74 | |
| 75 | void ParabolicPath::calcPositionEaseOutH(sead::Vector3f* pos, f32 prog) const { |
| 76 | calcPositionHV(pos, h: easeOut(t: prog), v: prog); |
| 77 | } |
| 78 | |
| 79 | void ParabolicPath::calcDirection(sead::Vector3f* pos, f32 prog, f32 stepSize) const { |
| 80 | f32 prog1, prog2; |
| 81 | if (prog < stepSize) { |
| 82 | prog1 = 0.0f; |
| 83 | prog2 = stepSize; |
| 84 | } else if ((1.0f - stepSize) < prog) { |
| 85 | prog2 = 1.0f; |
| 86 | prog1 = 1.0f - stepSize; |
| 87 | } else { |
| 88 | prog2 = prog + stepSize; |
| 89 | prog1 = prog; |
| 90 | } |
| 91 | |
| 92 | sead::Vector3f pos1, pos2; |
| 93 | calcPosition(pos: &pos1, prog: prog1); |
| 94 | calcPosition(pos: &pos2, prog: prog2); |
| 95 | *pos = pos2 - pos1; |
| 96 | tryNormalizeOrZero(out: pos); |
| 97 | } |
| 98 | |
| 99 | f32 ParabolicPath::calcPathSpeedFromGravityAccel(f32 frames) const { |
| 100 | return sead::Mathf::abs(x: frames / mGravity); |
| 101 | } |
| 102 | |
| 103 | f32 ParabolicPath::calcPathSpeedFromAverageSpeed(f32 frames) const { |
| 104 | return frames / getTotalLength(iterations: 10); |
| 105 | } |
| 106 | |
| 107 | f32 ParabolicPath::calcPathSpeedFromHorizontalSpeed(f32 frames) const { |
| 108 | return frames / mHorizontalDistance; |
| 109 | } |
| 110 | |
| 111 | s32 ParabolicPath::calcPathTimeFromGravityAccel(f32 frames) const { |
| 112 | return 1.0f / calcPathSpeedFromGravityAccel(frames); |
| 113 | } |
| 114 | |
| 115 | s32 ParabolicPath::calcPathTimeFromAverageSpeed(f32 frames) const { |
| 116 | return 1.0f / calcPathSpeedFromAverageSpeed(frames); |
| 117 | } |
| 118 | |
| 119 | s32 ParabolicPath::calcPathTimeFromHorizontalSpeed(f32 frames) const { |
| 120 | return 1.0f / calcPathSpeedFromHorizontalSpeed(frames); |
| 121 | } |
| 122 | |
| 123 | } // namespace al |
| 124 | |