| 1 | #include "Library/Nerve/NerveUtil.h" |
| 2 | |
| 3 | #include <math/seadMathCalcCommon.h> |
| 4 | |
| 5 | #include "Library/Math/MathUtil.h" |
| 6 | #include "Library/Nerve/IUseNerve.h" |
| 7 | #include "Library/Nerve/NerveAction.h" |
| 8 | #include "Library/Nerve/NerveActionCtrl.h" |
| 9 | #include "Library/Nerve/NerveKeeper.h" |
| 10 | #include "Library/Nerve/NerveStateCtrl.h" |
| 11 | |
| 12 | namespace al { |
| 13 | void setNerve(IUseNerve* user, const Nerve* nerve) { |
| 14 | user->getNerveKeeper()->setNerve(nerve); |
| 15 | } |
| 16 | |
| 17 | void setNerveAtStep(IUseNerve* user, const Nerve* nerve, s32 step) { |
| 18 | if (user->getNerveKeeper()->getCurrentStep() == step) |
| 19 | user->getNerveKeeper()->setNerve(nerve); |
| 20 | } |
| 21 | |
| 22 | bool isStep(const IUseNerve* user, s32 step) { |
| 23 | return user->getNerveKeeper()->getCurrentStep() == step; |
| 24 | } |
| 25 | |
| 26 | void setNerveAtGreaterEqualStep(IUseNerve* user, const Nerve* nerve, s32 step) { |
| 27 | if (user->getNerveKeeper()->getCurrentStep() >= step) |
| 28 | user->getNerveKeeper()->setNerve(nerve); |
| 29 | } |
| 30 | |
| 31 | bool isNerve(const IUseNerve* user, const Nerve* nerve) { |
| 32 | return user->getNerveKeeper()->getCurrentNerve() == nerve; |
| 33 | } |
| 34 | |
| 35 | s32 getNerveStep(const IUseNerve* user) { |
| 36 | return user->getNerveKeeper()->getCurrentStep(); |
| 37 | } |
| 38 | |
| 39 | const Nerve* getCurrentNerve(const IUseNerve* user) { |
| 40 | return user->getNerveKeeper()->getCurrentNerve(); |
| 41 | } |
| 42 | |
| 43 | bool isFirstStep(const IUseNerve* user) { |
| 44 | return isStep(user, step: 0); |
| 45 | } |
| 46 | |
| 47 | bool isGreaterStep(const IUseNerve* user, s32 step) { |
| 48 | return user->getNerveKeeper()->getCurrentStep() > step; |
| 49 | } |
| 50 | |
| 51 | bool isGreaterEqualStep(const IUseNerve* user, s32 step) { |
| 52 | return user->getNerveKeeper()->getCurrentStep() >= step; |
| 53 | } |
| 54 | |
| 55 | bool isLessStep(const IUseNerve* user, s32 step) { |
| 56 | return user->getNerveKeeper()->getCurrentStep() < step; |
| 57 | } |
| 58 | |
| 59 | bool isLessEqualStep(const IUseNerve* user, s32 step) { |
| 60 | return user->getNerveKeeper()->getCurrentStep() <= step; |
| 61 | } |
| 62 | |
| 63 | bool isInRangeStep(const IUseNerve* user, s32 startStep, s32 endStep) { |
| 64 | NerveKeeper* nerveKeeper = user->getNerveKeeper(); |
| 65 | return startStep <= nerveKeeper->getCurrentStep() && nerveKeeper->getCurrentStep() <= endStep; |
| 66 | } |
| 67 | |
| 68 | bool isIntervalStep(const IUseNerve* user, s32 interval, s32 offset) { |
| 69 | s32 currentStep = user->getNerveKeeper()->getCurrentStep() - offset; |
| 70 | return currentStep >= 0 && currentStep % interval == 0; |
| 71 | } |
| 72 | |
| 73 | bool isIntervalOnOffStep(const IUseNerve* user, s32 interval, s32 offset) { |
| 74 | return ((user->getNerveKeeper()->getCurrentStep() - offset) / interval) % 2 == 0; |
| 75 | } |
| 76 | |
| 77 | bool isNewNerve(const IUseNerve* user) { |
| 78 | return isLessStep(user, step: 0); |
| 79 | } |
| 80 | |
| 81 | s32 calcNerveInterval(const IUseNerve* user, s32 interval, s32 offset) { |
| 82 | s32 remain = getNerveStep(user) - offset; |
| 83 | |
| 84 | if (interval < 1 || remain < 1) |
| 85 | return 0; |
| 86 | |
| 87 | return remain / interval; |
| 88 | } |
| 89 | |
| 90 | f32 calcNerveRate(const IUseNerve* user, s32 max) { |
| 91 | if (max < 1) |
| 92 | return 1.0f; |
| 93 | |
| 94 | f32 curStep = getNerveStep(user); |
| 95 | return sead::Mathf::clamp(value: curStep / max, low: 0.0f, high: 1.0f); |
| 96 | } |
| 97 | |
| 98 | f32 calcNerveRate(const IUseNerve* user, s32 min, s32 max) { |
| 99 | f32 rate = normalize(x: (f32)getNerveStep(user), min: (f32)min, max: (f32)max); |
| 100 | return sead::Mathf::clamp(value: rate, low: 0.0f, high: 1.0f); |
| 101 | } |
| 102 | |
| 103 | f32 calcNerveEaseInRate(const IUseNerve* user, s32 max) { |
| 104 | return easeIn(t: calcNerveRate(user, max)); |
| 105 | } |
| 106 | |
| 107 | f32 calcNerveEaseInRate(const IUseNerve* user, s32 min, s32 max) { |
| 108 | return easeIn(t: calcNerveRate(user, min, max)); |
| 109 | } |
| 110 | |
| 111 | f32 calcNerveEaseOutRate(const IUseNerve* user, s32 max) { |
| 112 | return easeOut(t: calcNerveRate(user, max)); |
| 113 | } |
| 114 | |
| 115 | f32 calcNerveEaseOutRate(const IUseNerve* user, s32 min, s32 max) { |
| 116 | return easeOut(t: calcNerveRate(user, min, max)); |
| 117 | } |
| 118 | |
| 119 | f32 calcNerveEaseInOutRate(const IUseNerve* user, s32 max) { |
| 120 | return easeInOut(t: calcNerveRate(user, max)); |
| 121 | } |
| 122 | |
| 123 | f32 calcNerveEaseInOutRate(const IUseNerve* user, s32 min, s32 max) { |
| 124 | return easeInOut(t: calcNerveRate(user, min, max)); |
| 125 | } |
| 126 | |
| 127 | f32 calcNerveSquareInRate(const IUseNerve* user, s32 max) { |
| 128 | return squareIn(t: calcNerveRate(user, max)); |
| 129 | } |
| 130 | |
| 131 | f32 calcNerveSquareInRate(const IUseNerve* user, s32 min, s32 max) { |
| 132 | return squareIn(t: calcNerveRate(user, min, max)); |
| 133 | } |
| 134 | |
| 135 | f32 calcNerveSquareOutRate(const IUseNerve* user, s32 max) { |
| 136 | return squareOut(t: calcNerveRate(user, max)); |
| 137 | } |
| 138 | |
| 139 | f32 calcNerveSquareOutRate(const IUseNerve* user, s32 min, s32 max) { |
| 140 | return squareOut(t: calcNerveRate(user, min, max)); |
| 141 | } |
| 142 | |
| 143 | f32 calcNerveEaseByTypeRate(const IUseNerve* user, s32 max, s32 type) { |
| 144 | return easeByType(t: calcNerveRate(user, max), easeType: type); |
| 145 | } |
| 146 | |
| 147 | f32 calcNerveEaseByTypeRate(const IUseNerve* user, s32 min, s32 max, s32 type) { |
| 148 | return easeByType(t: calcNerveRate(user, min, max), easeType: type); |
| 149 | } |
| 150 | |
| 151 | f32 calcNervePowerInRate(const IUseNerve* user, s32 max, f32 power) { |
| 152 | return powerIn(t: calcNerveRate(user, max), exp: power); |
| 153 | } |
| 154 | |
| 155 | f32 calcNervePowerInRate(const IUseNerve* user, s32 min, s32 max, f32 power) { |
| 156 | return powerIn(t: calcNerveRate(user, min, max), exp: power); |
| 157 | } |
| 158 | |
| 159 | f32 calcNervePowerOutRate(const IUseNerve* user, s32 max, f32 power) { |
| 160 | return powerOut(t: calcNerveRate(user, max), exp: power); |
| 161 | } |
| 162 | |
| 163 | f32 calcNervePowerOutRate(const IUseNerve* user, s32 min, s32 max, f32 power) { |
| 164 | return powerOut(t: calcNerveRate(user, min, max), exp: power); |
| 165 | } |
| 166 | |
| 167 | f32 calcNerveJumpRate(const IUseNerve* user, s32 inMax, s32 upDuration, s32 release) { |
| 168 | s32 step = getNerveStep(user); |
| 169 | if (step <= inMax) |
| 170 | return calcNerveEaseOutRate(user, max: inMax); |
| 171 | |
| 172 | s32 startRelease = upDuration + inMax; |
| 173 | if (step <= startRelease) |
| 174 | return 1.0f; |
| 175 | |
| 176 | return lerpValue(a: 1.0f, b: 0.0f, t: calcNerveEaseInRate(user, min: startRelease, max: startRelease + release)); |
| 177 | } |
| 178 | |
| 179 | f32 calcNerveEaseInValue(const IUseNerve* user, s32 min, s32 max, f32 start, f32 end) { |
| 180 | return lerpValue(a: start, b: end, t: calcNerveEaseInRate(user, min, max)); |
| 181 | } |
| 182 | |
| 183 | f32 calcNerveStartEndRate(const IUseNerve* user, s32 inMax, s32 upDuration, s32 release) { |
| 184 | s32 step = getNerveStep(user); |
| 185 | if (step <= inMax) |
| 186 | return calcNerveEaseInOutRate(user, max: inMax); |
| 187 | |
| 188 | s32 startRelease = upDuration + inMax; |
| 189 | if (step <= startRelease) |
| 190 | return 1.0f; |
| 191 | |
| 192 | return lerpValue(a: 1.0f, b: 0.0f, |
| 193 | t: calcNerveEaseInOutRate(user, min: startRelease, max: startRelease + release)); |
| 194 | } |
| 195 | |
| 196 | f32 calcNerveEaseInOutValue(const IUseNerve* user, s32 min, s32 max, f32 start, f32 end) { |
| 197 | return lerpValue(a: start, b: end, t: calcNerveEaseInOutRate(user, min, max)); |
| 198 | } |
| 199 | |
| 200 | f32 calcNerveValue(const IUseNerve* user, s32 max, f32 start, f32 end) { |
| 201 | return lerpValue(a: start, b: end, t: calcNerveRate(user, max)); |
| 202 | } |
| 203 | |
| 204 | f32 calcNerveValue(const IUseNerve* user, s32 min, s32 max, f32 start, f32 end) { |
| 205 | return lerpValue(a: start, b: end, t: calcNerveRate(user, min, max)); |
| 206 | } |
| 207 | |
| 208 | f32 calcNerveEaseInValue(const IUseNerve* user, s32 max, f32 start, f32 end) { |
| 209 | return lerpValue(a: start, b: end, t: calcNerveEaseInRate(user, max)); |
| 210 | } |
| 211 | |
| 212 | f32 calcNerveEaseOutValue(const IUseNerve* user, s32 max, f32 start, f32 end) { |
| 213 | return lerpValue(a: start, b: end, t: calcNerveEaseOutRate(user, max)); |
| 214 | } |
| 215 | |
| 216 | f32 calcNerveEaseOutValue(const IUseNerve* user, s32 min, s32 max, f32 start, f32 end) { |
| 217 | return lerpValue(a: start, b: end, t: calcNerveEaseOutRate(user, min, max)); |
| 218 | } |
| 219 | |
| 220 | f32 calcNerveEaseInOutValue(const IUseNerve* user, s32 max, f32 start, f32 end) { |
| 221 | return lerpValue(a: start, b: end, t: calcNerveEaseInOutRate(user, max)); |
| 222 | } |
| 223 | |
| 224 | f32 calcNerveSquareInValue(const IUseNerve* user, s32 max, f32 start, f32 end) { |
| 225 | return lerpValue(a: start, b: end, t: calcNerveSquareInRate(user, max)); |
| 226 | } |
| 227 | |
| 228 | f32 calcNerveSquareInValue(const IUseNerve* user, s32 min, s32 max, f32 start, f32 end) { |
| 229 | return lerpValue(a: start, b: end, t: calcNerveSquareInRate(user, min, max)); |
| 230 | } |
| 231 | |
| 232 | f32 calcNerveSquareOutValue(const IUseNerve* user, s32 max, f32 start, f32 end) { |
| 233 | return lerpValue(a: start, b: end, t: calcNerveSquareOutRate(user, max)); |
| 234 | } |
| 235 | |
| 236 | f32 calcNerveSquareOutValue(const IUseNerve* user, s32 min, s32 max, f32 start, f32 end) { |
| 237 | return lerpValue(a: start, b: end, t: calcNerveSquareOutRate(user, min, max)); |
| 238 | } |
| 239 | |
| 240 | f32 calcNerveEaseByTypeValue(const IUseNerve* user, s32 max, f32 start, f32 end, s32 type) { |
| 241 | return lerpValue(a: start, b: end, t: calcNerveEaseByTypeRate(user, max, type)); |
| 242 | } |
| 243 | |
| 244 | f32 calcNerveEaseByTypeValue(const IUseNerve* user, s32 min, s32 max, f32 start, f32 end, |
| 245 | s32 type) { |
| 246 | return lerpValue(a: start, b: end, t: calcNerveEaseByTypeRate(user, min, max, type)); |
| 247 | } |
| 248 | |
| 249 | f32 calcNerveCosCycle(const IUseNerve* user, s32 max) { |
| 250 | if (max == 0) |
| 251 | return 1.0f; |
| 252 | return sead::Mathf::cos(t: (f32)getNerveStep(user) / max * sead::Mathf::pi2()); |
| 253 | } |
| 254 | |
| 255 | f32 calcNerveSinCycle(const IUseNerve* user, s32 max) { |
| 256 | if (max == 0) |
| 257 | return 1.0f; |
| 258 | return sead::Mathf::sin(t: (f32)getNerveStep(user) / max * sead::Mathf::pi2()); |
| 259 | } |
| 260 | |
| 261 | f32 calcNerveRepeatRate(const IUseNerve* user, s32 max) { |
| 262 | return (getNerveStep(user) % max) / (f32)max; |
| 263 | } |
| 264 | |
| 265 | f32 calcNerveRepeatDegree(const IUseNerve* user, s32 max) { |
| 266 | return calcNerveRepeatRate(user, max) * 360.0f; |
| 267 | } |
| 268 | |
| 269 | f32 calcNerveJumpValue(const IUseNerve* user, s32 inMax, s32 upDuration, s32 release, f32 factor) { |
| 270 | return calcNerveJumpRate(user, inMax, upDuration, release) * factor; |
| 271 | } |
| 272 | |
| 273 | f32 calcNerveStartEndValue(const IUseNerve* user, s32 inMax, s32 upDuration, s32 release, f32 start, |
| 274 | f32 end) { |
| 275 | return lerpValue(a: start, b: end, t: calcNerveStartEndRate(user, inMax, upDuration, release)); |
| 276 | } |
| 277 | |
| 278 | void initNerveState(IUseNerve* user, NerveStateBase* state, const Nerve* nerve, const char* name) { |
| 279 | state->init(); |
| 280 | user->getNerveKeeper()->getStateCtrl()->addState(state, nerve, name); |
| 281 | } |
| 282 | |
| 283 | void addNerveState(IUseNerve* user, NerveStateBase* state, const Nerve* nerve, const char* name) { |
| 284 | user->getNerveKeeper()->getStateCtrl()->addState(state, nerve, name); |
| 285 | } |
| 286 | |
| 287 | bool updateNerveState(IUseNerve* user) { |
| 288 | return user->getNerveKeeper()->getStateCtrl()->updateCurrentState(); |
| 289 | } |
| 290 | |
| 291 | bool updateNerveStateAndNextNerve(IUseNerve* user, const Nerve* nerve) { |
| 292 | if (user->getNerveKeeper()->getStateCtrl()->updateCurrentState()) { |
| 293 | user->getNerveKeeper()->setNerve(nerve); |
| 294 | return true; |
| 295 | } |
| 296 | |
| 297 | return false; |
| 298 | } |
| 299 | |
| 300 | bool isStateEnd(const IUseNerve* user) { |
| 301 | return user->getNerveKeeper()->getStateCtrl()->isCurrentStateEnd(); |
| 302 | } |
| 303 | |
| 304 | } // namespace al |
| 305 | |
| 306 | namespace alNerveFunction { |
| 307 | |
| 308 | void setNerveAction(al::IUseNerve* user, const char* action) { |
| 309 | al::NerveKeeper* keeper = user->getNerveKeeper(); |
| 310 | keeper->setNerve(keeper->getActionCtrl()->findNerve(name: action)); |
| 311 | } |
| 312 | |
| 313 | } // namespace alNerveFunction |
| 314 | |